

SAPONINS FROM *PRIMULA DENTICULATA*

VIQAR UDDIN AHMAD, VIQAR SULTANA, SHOIB ARIF and QAZI NAJMUS SAQIB*

H.E.J. Research Institute of Chemistry, University of Karachi, Karachi-32, Pakistan; *Department of Pharmacy, Gomal University, Dera Ismail Khan (NWFP), Pakistan

(Revised received 22 April 1987)

Key Word Index—*Primula denticulata*: Primulaceae; triterpenoid saponins; primulanin; saxifragitolin B.

Abstract—A new triterpenoid saponin, primulanin, isolated from the whole plant of *Primula denticulata* was characterized as 3-O[β -D-xylopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl-(1 \rightarrow 4)- α -L-arabinopyranosyloxy]-16 α -hydroxy-13 β ,28-epoxy-olean-30-al.

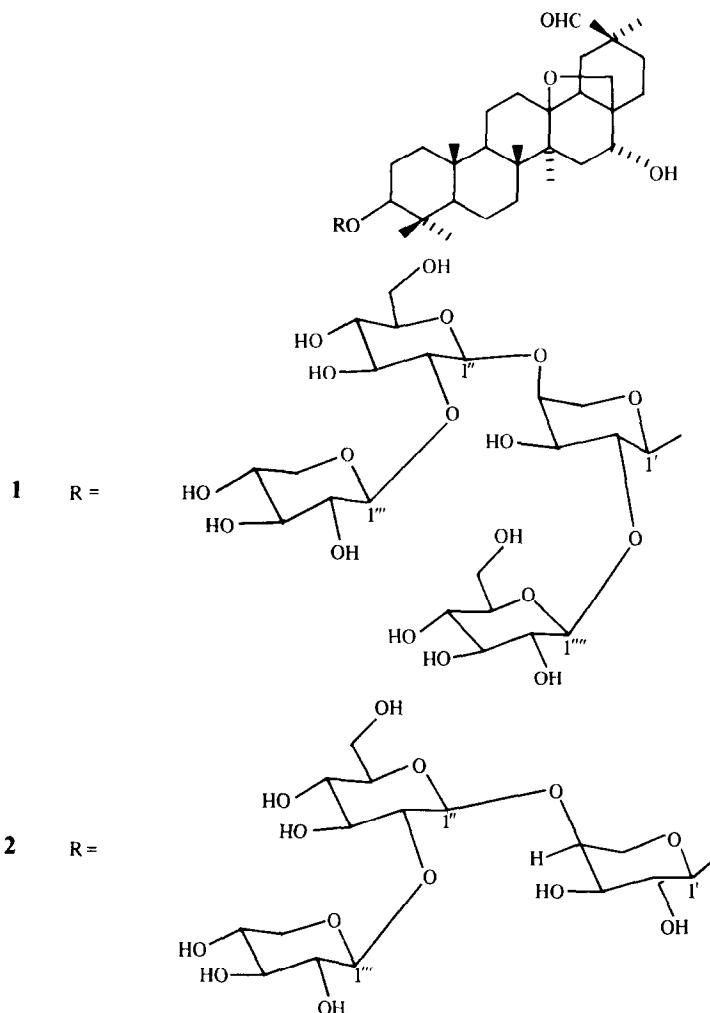
INTRODUCTION

Primula denticulata Sm. occurs as a common weed in the mountains of the North West Frontier Province of Pakistan [1]. Various other *Primula* species have been reported to have medicinal properties [2, 3] therefore a study of the saponins of *P. denticulata* has been undertaken. Previous work has identified five triterpenoid saponins pridentigenins A-E as constituents of the saponin fraction of *P. denticulata* [4-7]. We wish now to report the isolation and structure determination of a new saponin, primulanin (**2**), and saxifragifolia B (**1**) from this plant.

RESULTS AND DISCUSSION

Compounds **1** and **2** were isolated from the crude mixture of saponins by repeated chromatography on silica gel and by HPLC.

Compound **1** contained hydroxyl (3400-3200 cm^{-1}) and aldehyde (1720 cm^{-1}) groups. Its UV spectrum had only end absorption at 205 nm indicating the absence of double bonds. On acid hydrolysis, it yielded cyclameritin A as the aglycone [8] and D-glucose, L-arabinose and D-xylose. The negative ion FABMS spectrum exhibited a molecular ion peak at m/z 1059 [$M - H$]⁻ and fragment ions at m/z 927, 897 and 764 which were attributed to the loss of a terminal pentose, a terminal glucose and of a terminal glucose-pentose disaccharide or terminal pentose and terminal glucose unit respectively. There was no evidence of the loss of either a pentose pentose or a glucose-glucose disaccharide.


The ¹H NMR spectrum of compound **1** in CD_3OD revealed the presence of six tertiary methyl groups through signals at δ 0.85, 0.89, 0.97, 1.05, 1.13 and 1.27. In addition there were peaks at δ 3.06 (1H, d, J = 7.6 Hz, H-28), 3.46 (d, J = 7.9 Hz, H-28), and multiplets at δ 3.2 and 3.6 due to H-3 and H-16 respectively [overlapped due to the severe spectral crowding in the region δ 2.5-4 characteristic of oligosaccharides]. Four anomeric proton signals were also observed at δ 4.35 (d, J = 3 Hz, H-1'), 4.55 (d, J = 7.6 Hz, H-1''), 4.60 (d, J = 7.6 Hz, H-1''') and 4.70 (d, J = 7.6 Hz, H-1''') supporting the α -configuration of L-arabinose, and the β -configurations of D-glucose and D-xylose. These assignments were also confirmed by

means of 2D COSY-45, J -resolved, NOESY and hetero-COSY experiments.

The sequence and configuration of the sugar moieties were also verified by the ¹³C NMR spectrum, in which four anomeric signals appeared at δ 104.3, 104.7, 105.5 and 107.2, consistent with the presence of the α -L-arabinopyranosyl, β -D-glucopyranosyl and β -D-xylopyranosyl configurations in a 1:2:1 ratio. Comparison of the ¹³C NMR spectrum (edited DEPT experiment) of **1** with those of related compound also helped in the assignments. It was confirmed from the ¹³C NMR data, that cyclameritin A was present with the sugar moieties attached at the C-3 position, as the C-3 signal of the aglycone appeared at δ 90.8. On the basis of above findings, the structure of compound **1** was concluded to be 3-O[β -D-xylopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl-(1 \rightarrow 4)- α -L-arabinopyranosyloxy]-16 α -hydroxy-13 β ,28-epoxy-olean-30-al. Glycosides of same structure as compound **1** have been isolated from *Androsace saxifragifolia* [9] and *Cyclamen europaeum* [10].

The UV and IR spectra of compound **2** were similar to those of compound **1**. Acid hydrolysis of **2** resulted in the formation of an aglycone characterized as cyclameritin A [8] and D-glucose, D-xylose and L-arabinose. The positive FAB-MS exhibited peaks at m/z 921 [$M + \text{Na}$]⁺ and 899 [$M + \text{H}$]⁺ and a peak at m/z 767 due to the elimination of pentose. In the ¹H NMR spectrum, three anomeric proton signals were observed at δ 4.48 (d, J = 7.6 Hz), 4.50 (d, J = 7.4 Hz) and 4.2 (d, J = 5.5 Hz) supporting the β -configurations of D-glucose and D-xylose and the α -configuration of L-arabinose.

Two-dimensional NMR measurements (COSY-45, NOESY, J -resolved, hetero-COSY) were also carried out to verify the assignments. A comparison of the ¹³C NMR spectrum of **2** with that of **1** showed that the signals due to C-1, C-2 and C-3 of α -L-arabinopyranosyl moiety were shifted by +3.2, -5.9 and +0.6 respectively, while the other common signals were almost unchanged (Table 1) suggesting that the β -D-glucose attached to C-2 of the α -L-arabinopyranosyl moiety of **1** was absent in **2**. Based upon the above observations, the structure of the new saponin **2** was established as 3-O[β -D-xylopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl-(1 \rightarrow 4)- α -L-arabinopyranosyloxy]-16 α -hydroxy-13,28-epoxy-olean-30-al.

EXPERIMENTAL

Mps: uncorr. ^1H NMR and ^{13}C NMR: CD_3OD using TMS as int. standard. Analytical TLC: silica gel using $n\text{-BuOH-AcOH-H}_2\text{O}$ (12:3:5) and cellulose using $\text{EtOAc-H}_2\text{O-MeOH-AcOH}$ (13:3:3:4); HPLC: RP-18 column and Refracto Monitor III R.I. detector.

Plant material. *P. denticulata* (3.5 kg) was collected from Dongagali shade (north-west frontier province of Pakistan), air-dried then ground to a coarse powder and extracted with MeOH under reflux. The residue was shaken with $n\text{-BuOH}$ and H_2O and the $n\text{-BuOH}$ layer evaporated. The residue was dissolved in the minimum amount of MeOH and diluted with cold Et_2O to yield a cream coloured ppt. of crude saponins (10 g) 8 g of which was chromatographed on a silica gel column. The fractions obtained with $\text{CHCl}_3\text{-MeOH}$ (9:1) contained compound 2 and (8.5:1.5) compound 1, which were further purified by rechromatography on silica gel (230–400 mesh size) and by HPLC using as solvent systems $\text{MeOH-H}_2\text{O}$ (17:3) and (4:1) (flow rate 5 ml/min).

Compound 1. $\text{C}_{52}\text{H}_{84}\text{O}_{22}$, mp 238–239°, $[\alpha]_D = -19.2^\circ$, (MeOH; c 0.052). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 205; IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} : 3400–3200 (OH), 2900 (methylene), 1720 (CHO), 1040 and 980 (CO); ^1H NMR (CD_3OD , 300 MHz): δ 0.85 (3H, s, H-25), 0.89 (3H, s, H-24), 0.97 (3H, s, H-29), 1.05 (3H, s, H-23), 1.13 (3H, s, H-26), 1.25 (1H, dd, $J = 5.5, 13$ Hz, H-18), 1.27 (3H, s, H-27), 3.06 (1H, d, $J = 7.6$ Hz, H-28), 3.20 (1H, m, H-3), 3.46 (1H, d, $J = 7.9$ Hz, H-28), 3.6 (1H, m, H-16), 3.2–4.0 (sugar protons), 4.35 (d, $J = 3$ Hz, H-1'), 4.55 (d, $J = 7.6$ Hz, H-1''), 4.60 (d, $J = 7.6$ Hz, H-1'''), 4.70 (d, $J = 7.6$ Hz, H-1'''), 9.40 (1H, s, H-30); Positive FABMS m/z : 1084 $[\text{M} + \text{Na}]^+$, 1061 $[\text{M} + \text{H}]^+$; negative FABMS m/z : 1059 $[\text{M} - \text{H}]^+$, 927 $[\text{M} - \text{pentose} - \text{H}]^+$, 897 $[\text{M} - \text{glucose} - \text{H}]^+$, 764 $[\text{M} - \text{glucose} - \text{pentose} - \text{H}]^+$.

Acid hydrolysis of compound 1. Compound 1 (20 mg) was refluxed with 0.1M HCl in aq. MeOH (5 ml) for 4 hr. The reaction mixture was then concentrated under red. pres. to remove MeOH. Addition of H_2O gave a white ppt. which was collected by filtration and identified as a mixture of two compounds, cyclamiretin A and D. The aq. filtrate was adjusted to pH 7 with Ag_2Co_3 and filtered. The supernatant was concd under red. pres. and compared with standard sugars on TLC (cellulose). The sugars were detected by spraying the plate with a satd soln of aniline phthalate in BuOH .

Compound 2. $\text{C}_{44}\text{H}_{74}\text{O}_{17}$, mp 290° (dec.), $[\alpha]_D = -39.2^\circ$ (MeOH; c 0.055). UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 205; IR $\nu_{\text{max}}^{\text{KBr}}$ cm $^{-1}$: 3300–3400 (OH), 2900 (methylene) 1718 (CHO), 1040 and 980 (CO); ^1H NMR (CD_3OD , 300 MHz): δ 0.85 (3H, s, H-25), 0.89 (3H, s, H-24), 0.97 (3H, s, H-29), 1.05 (3H, s, H-23), 1.14 (3H, s, H-26), 1.25 (1H, dd, $J = 6, 13$ Hz, H-18), 1.27 (3H, s, H-27), 3.06 (1H, d, $J = 7.6$ Hz, H-28), 3.10 (1H, m, H-3), 3.46 (1H, d, $J = 7.9$ Hz, H-28), 3.60 (1H, m, H-16), 3.2–4.0 (sugar protons), 4.2 (d, $J = 5.5$ Hz, H-1'), 4.48 (d, J

Table 1. ^{13}C NMR spectral data of compounds **1** and **2**
(75 MHz, CD_3OD)

C	1	2	C	1	2
1	40.2	40.2	1'	104.3	107.5
2	27.2	27.2	2'	80.1	74.2
3	91.3	90.8	3'	74.2	74.8
4	40.6	40.2	4'	75.8	75.6
5	56.6	56.6	5'	65.9	66.0
6	18.7	18.7	1''	104.7	105.2
7	32.8	32.8	2''	85.0	86.1
8	43.4	43.4	3''	77.5	77.5
9	53.9	53.9	4''	71.1	71.0
10	37.9	37.8	5''	78.0	77.8
11	19.8	19.8	6''	63.3	62.5
12	31.0	30.9	1'''	107.2	107.9
13	88.2	88.2	2'''	76.0	76.1
14	45.3	45.3	3'''	77.8	77.8
15	34.0	34.0	4'''	70.9	70.8
16	77.6	77.5	5'''	67.4	67.1
17	44.8	44.8	1''''	105.5	...
18	51.3	51.3	2''''	77.6	...
19	37.0	37.0	3''''	79.5	...
20	48.2	48.2	4''''	72.0	...
21	35.1	35.1	5''''	77.8	...
22	33.2	33.2	6''''	62.5	...
23	28.4	28.4			
24	16.7	16.8			
25	16.7	16.8			
26	18.8	18.8			
27	20.1	20.1			
28	78.4	78.4			
29	24.3	24.3			
30	209.1	209.2			

= 7.6 Hz, H-1'); 4.50 (*d*, $J = 7.4$ Hz, 1''), 9.40 (1H, *s*, H-30); Positive FABMS m/z : 921 [M + Na] $^+$, 899 [M + H] $^+$, 767 [M - pentose + H] $^+$; Negative FABMS m/z : 898 [M - H] $^-$.

Acid hydrolysis of compound 2 was carried out by the same method as that described for compound **1**.

Acknowledgement We are sincerely thankful to Prof. David L. Smith, Department of Medicinal Chemistry and Pharmacognosy, West Lafayette, Indiana 47907, U.S.A. for performing negative FABMS on these compounds.

REFERENCES

1. Nasir, E. and Ali, S. I. (1972) *An Annotated Catalogue of Vascular Plants of West Pakistan and Kashmir*, p. 538.
2. Dymock, W., Warden, C. J. and Hooper, D. H. (1890) *Pharmacographia* 345.
3. Lewis, W. H. and Elvin, M. P. F. (1977) *Medical Botany*, p. 84. Wiley, New York.
4. Ahmad, V. U., Saqib, Q. N., Usmanhani, K., Fuchs, W. and Voelter, W. (1980) *Z. Naturforsch* **35b**, 511.
5. Ahmad, V. U., Saqib, Q. N. and Usmanhani, K. (1980) *Phytochemistry* **19**, 1875.
6. Ahmad, V. U., Saqib, Q. N. and Usmanhani, K. (1982) *Sci. Pharm.* **50**, 26.
7. Ahmad, V. U., Saqib, Q. N., Usmanhani, K., Voelter, W. and Fuchs, W. (1983) *J. Chem. Soc. Pak.* **5**, 3.
8. Harvala, C. and Hyland, P. J. (1978) *Planta Med.* **33**, 180.
9. Walther, J. P., Williams, D. H., Mahato, S. B., Pal, B. C. and Barna, J. C. J. (1986) *J. Chem. Soc. Perkin Trans. I*, 1527.
10. Tschesche, R., Mercker, H. J. and Wulff, G. (1969) *Just. Liebigs Ann. Chem.* **721**, 194.